New Delhi: In another step forward for laser weapons that brings to mind the Death Star's superlaser, Lockheed Martin has demonstrated a 30-kilowatt fiber laser produced by combining many lasers into a single beam of light. According to the company, this is the highest power laser yet that was still able to maintain beam quality and electrical efficiency, paving the way for a laser weapon system suitable, if not for a Death Star, for a wide range of air, land and sea military platforms. It is a weapon that could mean the end of traditional missiles. The firm says the weapon could eventually be mounted on jets, tanks and fighter planes - and will more than triple in strength before being used in combat. The record-breaking power output was achieved by combining many fiber lasers into a single, near-perfect quality beam of light. Though laser weapons have been successfully tested in the past, Lockheed says that even though such systems could acquire, track, and destroy targets, they lack practicality as a tactical weapon because the inefficient nature of the lasers resulted in them being too large, needing too much power, and being difficult to cool. The process, called Spectral Beam Combining, sends beams from multiple fiber laser modules, each with a unique wavelength, into a combiner that forms a single, powerful, high quality beam. Spectrum Beam Combining seeks to overcome these deficiencies by means of fiber laser modules. Fiber lasers are lasers where the active gain medium consists of an optical fiber doped with a rare-earth element, such as erbium, ytterbium, neodymium, or others. The optical fibers are flexible, so the laser can be thousands of meters long for greater gain, yet takes up very little space because it can be coiled like a rope, and the large surface to volume ratio means that it's easy to cool. In addition, fiber laser are very durable and project a high-quality beam. But the key feature for Lockheed is that fiber lasers are as easy to direct as water through a hose. Spectrum Beam Combining involves taking the laser beams from a number of fiber laser modules – each one generating light at its own, unique frequency – and passing them through a combiner to produce a single, powerful laser beam of "near-perfect" quality that uses fifty percent less electricity than an equivalent solid-state laser. The project has received funding from the US Army, which is also working with Boeing on a laser mounted weapon.